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ABSTRACT 

Following is the analytical study on the propagation of undamped thermoconvective waves, an electrically 

conducting viscous fluid is hypothesized which has the property of uniform horizontal magnetic field in heating 

the uniform vertical concentration gradient for a solute. It has seen that undamped thermoconvective waves 

propagation in a specific order, whereas the heating of fluid, is based on the solute concentration, this decreased 

vertically or show vertical pattern. If the heating of fluid takes place in upward manner the propagation of waves 

is highly effected, the above aspect proves hypothetically and has shown that its laboratory demonstration is also 

possible.  
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Introduction 

Many scientists has worked on the hypothesis of thermoconvective waves with MHD. The condition kθ >

η(kθ = 4.5 × 10−2cm2sec−1and η = 7.6 × 10−3cm2sec−1), does not exist in hydromagnetic stability has been 

studied by ‘Chandrasekhar’ (1961). ‘Luikov and Berkovsky’ (1970) observed that the phenomenon of BENARD 

convection does not exist for MHD or the propagation of waves showed decreased manner. The waves having this 

character are known as TCW, which are effected by nature of fluid and gravitational field. The moving property 

of TCW specially in fluid which have the property of electrical condition shows the propagation of waves 

uniformly in horizontally magnetic field was investigated  by ‘Takashima’ (1972). ‘Bhattacharyya and Gupta’ 

(1985) studied the mechanism of propagation of TCW in the binary mixture situation. The propagation of the 

undamped MHD thermoconvective waves depend on the temperature and heat, the waves also shows the 

relationship between thermal and magnetic diffusivity (kθ > η),  where kθ  and η  represent the thermal and 

magnetic diffusivity of the fluid, this situation is possible in astrophysical condition.  

 

The present study is based on a solute with a uniform vertical concentration gradient for the study of 

propagation of undamped MHD thermoconvective waves for viscous fluid. The whole study is the 

indication for a certain condition of undamped propagation of TCW (kθ > η). 
 

1. FORMULATION AND SOLUTION OF THE PROBLEM : The concerned equations of undamped MHD 

thermoconvective waves can be represented in  the form as given below :  

 

div v⃗ = 0,   (2.1) 
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div H⃗⃗ = 0,   (2.2) 

  

ρ
dv⃗⃗ 

dt
= −grad Q + μeH⃗⃗ . grad H⃗⃗ + μ∇2v⃗ + ρg⃗ ,   (2.3)   

 

dH⃗⃗ 

dt
= H⃗⃗ . grad v⃗ + η∇2H⃗⃗ ,   (2.4)   

 
dθ

dt
 = kθ∇

2θ,   (2.5)   

 
dC

dt
 = kp∇

2C.   (2.6) 

 

Where 

     
d

dt
≡

∂

∂t
+ v.⃗⃗ ∇⃗⃗  

 

The equation of state 

 

 (i.e.)      ρ = ρ0[I − α(θ − θ0) − α′(C − C0)].                                                                       (2.7) 

 

reduces to  

 

 ρ = ρ0 + (∇ρ)θ + (∇ρ)p.                     (2.8) 

 

Here, (∇ρ)θ and (∇ρ)p are the change in density variation due to the variation of temperature and concentration 

respectively. Fluid velocity, density, magnetic permeability, coefficient of dynamic viscosity, magnetic field, 

temperature, concentration of solute and acceleration due to gravitation are denoted by v⃗ , ρ, μe, μ, H⃗⃗ , θ, C and g⃗  

respectively. As described earlier that the magnetic diffusivity indicated by η. σ  is the fluid’s electrical 

conductivity in equation (2.3), the pressure of the fluid indicated by Q, where as  
μeH

2

2
 denotes the magnetic 

pressure. When temperature increamentation takes place the density of fluid decreased, whereas if the density 

increases, the solute concentration will also be increased. 

 

If we consider the mass transfer equation as described in equation (2.6), the Fick’s law is used, according to which, 

diffusion flux is proportional to the concentration gradient, actually  diffusion flux is the total amount of solute 

which is transported by diffusion through a single unit area with a single unit time, the diffusion flux i̇̂ showed 

correlation variance with ∆C and ∆θ. If we consider the heat flux v⃗ , this is also depends on ∆C and ∆θ. 

 

We have the equation 

  

  i ̇ = −ρkp [ ∇⃗⃗ C + (
kD

θ
) ∇⃗⃗ θ].                                                                                                            (2.9) 
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Which indicates Fick’s law with the addition of mass transfer due to the changes in concentration gradient, the 

temperature gradient is also responsible for the mass transfer as described above. This is associated with soret 

effect and denotes the thermal diffusivity in equation (2.9), where the coefficient kD is the ratio of thermal 

diffusion. There is also the phenomenon of heat transfer with the variation in concentration gradient is highly 

effected in binary mixture, in addition to heat transfer due to temperature gradient. This another heat transfer 

due to ∆C is defined as “diffusion-thermo effect” or ‘Dufour’. In the present study soret and Dufour effect are not 

considered due to neglectivity of these two effect and these laws are important for mixture of the gas 

(incompressible binary mixture in the studies). The density variation (∇ρ)p denotes in the L.H.S. of equation (2.3). 

Here ρ is displaced by equation (2.8) and is negligible. The inertial effects of density due to the concentration of 

the solute are neglected. The equations (2.7) and (2.8) represent the concentration in the basic state, there is the 

variation in v⃗ , ρ, θ, H⃗⃗ , Q and C can be represented in the following manner when the state is undisturbed. 

 

 v⃗ = 0, Q = QB(x),    ρ = ρB(x).                                                                                                  (2.10) 

  

 θ = θ0 − βx,       C = C0 − β′x,       H⃗⃗ =H⃗⃗ 0, 

 

Where β and β′ may be either positive or negative. Comparing equations (2.1) to (2.8),  

we have 

 

 
dQ⃗⃗ B

dx
+ ρBg⃗ = 0,  ρB = ρ0(1 + αβx + α′β′x).                                                                           (2.11) 

 

  When the transverse plane waves are considered for propagation along y-axis, the variables are considered as :  

 

 v⃗  = (ν1,0),  Q=QB(x)+Q1,        ρ= ρB (x)+  ρ1,           (2.12) 

  

H⃗⃗   = (h, H0) ,  θ=θ0−βx+θ1,          C=C0−β′x+ ϕ1,                                                                  (2.13)  

 

The functions of  y and t are variable with perturbation quantities ν1, Q1, ρ1,h,  θ1 and ϕ1. H⃗⃗    and h both arises 

due to the expansion of the undisturbed horizontal magnetic line of forces with the vertical movability of fluid by 

propagation of waves.  

Equations (2.1) and (2.2) elaborate the condition of magnetic solenoidel and continuity of equation these 

are identical with reference to v⃗  and H⃗⃗  as shown in equations (2.12) and (2.13). By using equations (2.12) and 

(2.13) in equations (2.3) to (2.6) and taking the help of equations (2.7), (2.8), (2.10) and (2.11), we get the 

following equations :  

 

 ∇νν1 − g⃗ (αθ1 + α′ϕ1) −
μeH⃗⃗ 0

ρ0

∂h

∂y
=0,                          (2.14) 

 ∇ηh − H⃗⃗ 0
∂ν1

∂y
=0,                                              (2.15) 

 ∇kθ
θ1 − βν1=0,                                                                                             (2.16) 

 ∇kr
ϕ1 − β′ν1=0,                                                                         (2.17) 
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where  

  

 ν =
μ

ρ0
,     ∇x≡

∂

∂t
− x

∂2

∂y2. 

 

The equations (2.14) to (2.17) represent the phenomenon of natural convection with the help of equations 

(2.7) and (2.8), we can find the approximation of Oberbeck – Boussinesq, when the small oscillation takes place. 

Here we can explain a specific force for a single fluid pressure can be denoted by p,{ρ= ρ (θ, p)}. An algebraic 

equation of state is connected with ρ, θ and p can be intergrodifferential equation of state as below : 

 

 dρ = (
∂ρ

∂θ
)
p
dθ + (

∂ρ

∂p
)
θ
dp,                                                                                 (2.18) 

this equation is the derivative extended part of α = −
1

ρ
(
∂ρ

∂θ
)
P
andβθ =

1

ρ
(
∂ρ

∂p
)
θ
.   

Equation for ρ with density distribution ρθ can be solved at equilibrium state as below :  

 

         ρ=ρ0[1−α (θ−θ0)+ βθ (p−p0)]         (2.19) 

If we consider horizontal temperature difference for a gravitational field and is no forced convection p−p0=0, the 

value of p−p0 based on solution for vertical temperature differences, this cannot be shown as priori. The natural 

convection can be shown slow motion with minute rates of deformation, if pressure of all particles can be 

assumed as hydrostatic in nature. So we can take p−p0~ρ gL, here L is the vertical length, then the equation (2.19) 

takes the form 

 
density variation due to compressiblity 

density variation due to thermal expansion 
~

βθρgL

α∆θ
                                               (2.20) 

 

Here Δθ=θ−θ0 if L=2 m and Δθ~200C for a water, the ratio can be 2.5×10−3. Here effect of pressure on density 

variation can be neglected. According to ‘Arpaci and Larsen’ for atmospheric air L= 2m and Δθ~200C, the ratio 

should be 3.5×10−3. Here in both cases the effect of compressibility on density change can be neglected or 

ignored. In equation (2.20), the effect of compressibility on density change can ignored for thick layers (H⃗⃗ ) and 

the temperature difference is small. So the equation of state (2.19) can be summarized in the form of equation 

                                        ρ=ρ0[1−α (θ−θ0)].                                                                 (2.21) 

The phenomenon of compressibility effect on density change has proved in above equation. 𝛼 , the volume 

expansion coefficient having the range of 10−3 to 10−4for most of the fluid, the variations in density are 1% at 

200C for small variation in temperature, here density is constant in terms of natural convection except in the 

buoyancy force ρ0g⃗ αΔθ, which is proved by equation (2.21), the Oberbeck-Boussinesq approximation has proved 

by mathematical justification if the following conditions are governed:  

 

i)  Movement is buoyancy – driven and no forced convection is seen.  

ii)  The thickness of layer is not large when natural convection takes place.  

iii)  θ is small compared with fluid layer.  

 

From above statement the Oberbeck-Boussinesq approximation has proved in the two situations found from 

above statement: 
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i) The magnitude of α′ in the modified form of equations (2.7) and (2.8), is very small  

(α′<0).  

ii) C which is variation in concentration through out the fluid layer is minutely  

        compared with Q itself.  

 

The Oberbeck-Boussinesq approximation has proved by buoyancy force g⃗ (𝛼θ1+𝛼′ ϕ1) in the equation (2.14) i.e. 

momentum equation. The thickness of the layer in which natural convection takes place is not too large in our 

opinion the length of the tank containing the binary mixture can be compared with height of tank. 

 

(ν1, θ1, ϕ1 ,h) = (V, ξ, ϕ, G )ei (ωt−ky) ,        (2 .22) 

  

where V, ξ, ϕ and G are constants, ω is real and wave number is k. Subscription of equation (2.22) in equations 

(2.14) to (2.17) and elimination of V,ξ,ϕ, and G, thus we get the dispersion relation in the form of non 

dimensionless condition of the equation in the following manner. 

 

(a1 +
ℓ1
2

P
)(a1 +

ℓ1
2

Rm
) [(a1 + ℓ1

2) (a1 +
ℓ1
2

R
) − γ1] − (a1 +

ℓ1
2

R
) [γ1

′ (a1 +
ℓ1
2

Rm
) − Mℓ1

2 (a1 +
ℓ1
2

P
)] = 0, 

(2 .23) 

where 

 

ω1 = (
ν

g2)
1/3

ω,       ℓ1 = (
ν2

g
)
1/3

ℓ, R =
ν

kθ
,             P =

ν

kp
, 

 

γ1 = (
ν2

g
)
1/3

αβ,           Rm =
ν

η
, γ1

′ = (
ν2

g
)
1/3

α′β′,             

 

M =
μeH0

2

ρ0(νg)2/3,  a1 = 𝑖𝜔1. 

 

If there is no presence of magnetic field (M=0) and there is neither any type of temperature gradient nor any 

concentration of solute gradient (γ1 = γ′ = 0). Equation (2.23) paired in four first order equation of ℓ1
2  and 

explain pure viscous diffusion waves (𝜈-waves), pure mass diffusion waves (kp − waves), pure thermal diffusion 

waves (kθ − waves) and pure magnetic diffusion waves (η − waves). This is known very well that amplitude of 

waves described by a specific factor of exp (2𝜋)~ 540 times per wave  length. These type of waves are very 

strongly damped. In the following situation- M≠ 0, γ1 ≠ 0 and γ′
1 ≠ 0, the pure waves joined to produce four 

types of mode’s like modified kθ- waves, modified kp- waves, modified ν − 𝑤𝑎𝑣𝑒𝑠 and modified η -waves. This 

waves shows possibilites of undamaped TCW. The value of ℓ1 should be actual for undamped propagation of 

TCW, here the speed of dimensionless phase shows 
𝜔1

ℓ1
 position. When we solve the imaginary part of equation 

(2.23), we can find the equations (2.25) and (2.26) , for 𝜔1 ≠ 0 and ℓ1 ≠0  as given below: 

 

ω1
4 − [{

1

RRm
+

1

P
+ (

1

P
+ 1) (

1

R
+

1

Rm
)} ℓ1

4 + Mℓ1
2 − γ1 − γ1

′ ]ω1
2+

ℓ1
8

RPRm
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+
Mℓ1

6

RP
−

ℓ1
4

Rm
(
γ1
′

R
+

γ1

P
) = 0                                                                                                        (2.25) 

and 

 

ω1
2 (

1

Rm
+

1

R
+

1

P
+ 1) =

ℓ1
4

RP
(

1

Rm
+ 1)+ℓ1

2 (
1

R
+

1

P
) (

ℓ1
2

Rm
+ M)-[γ1 (

1

Rm
+

1

P
) + γ′ (

1

R
+

1

Rm
)].     

                                                                                                                                                                      (2.26) 

 

Equation (2.26) can be written as  

 

ω1
2 = B1ℓ1

4 + B2ℓ1
2 + B3,                                                                                                                  (2.27) 

 

where 

 

                                               B3 =
[γ1(

1

Rm
+

1

P
)+γ1

′ (
1

R
+

1

Rm
)]

(
1

Rm
+

1

R
+

1

P
+1)

 .                               (2.28) 

 

In the consequences of equations (2.27) and (2.25) takes the form  

ℓ1
8 [B1

2 − B1 {
1

RRm
+

1

P
+ (

1

P
+ 1) (

1

R
+

1

Rm
)} +

1

RmRP
] 

+ ℓ1
6 [2B1B2 − B1M − B2 {

1

RRm
+

1

P
+ (

1

P
+ 1) (

1

R
+

1

Rm
)} +

M

RP
] 

+ ℓ1
4 [2B1B3 + B2

2 + B1(γ1 + γ1
′ ) − B3 {

1

RRm
+

1

P
+ (

1

P
+ 1) (

1

R
+

1

Rm
)} − MB2 −

1

Rm
(
γ1

P
+

γ1
′

R
)] + ℓ1

2[2B2B3 +

B2(γ1 + γ1
′ ) − B3M] + B3

2 + B3(γ1 + γ1
′ ) = 0.          (2.29) 

Equation (2.29) is a biquadratic equation in ℓ1
2 with real coefficients. When we consider the product of ℓ1

2, ℓ2
2, ℓ3

2 

and ℓ4
2 assume as four roots as a negative, the equation (2.29) represent at least one positive root. Using the values 

of 𝐵1, 𝐵2 𝑎𝑛𝑑 𝐵3 from equations (2.26) to (2.28) in equation (2.29), we get  

 

(ℓ1ℓ2ℓ3ℓ4)
2 =

C

D
,                                                                                                                     (2.30) 

 

where 

 

 

C =
−[𝛾1(

1

𝑅𝑚
+

1

𝑃
)+γ1

′ (
1

𝑅
+

1

𝑅𝑚
)][𝛾1(

1

𝑅
+1)+γ1

′ (
1

𝑃
+1)]

(
1

𝑅𝑚
+

1

𝑅
+

1

𝑃
+1)

2                                                                           (2.31) 

and 

 

D = −[P (
1

Rm
+

1

R
) (

1

Rm
+ 1) (

1

R
+ 1) +

2

Rm
(
3

R
+

1

Rm
) + 2 + R(

1

Rm
+

1

P
) (

1

Rm
+ 1)(

1

P
+ 1)

+ Rm (
1

R
+

1

P
) (

1

R
+ 1) (

1

P
+ 1) + (

1

R
+

1

P
) {6 +

1

RP
+

1

Rm
+

1

Rm
2 } + (

1

R
+

1

P
)
2

+
4

Rm
(
1

P
+ 1)] 

  . 

                                                                                (
1

Rm
+

1

R
+

1

P
+ 1)

2
RPRm                                   (2.32) 



International Journal of Scientific Research in Science and Technology (www.ijsrst.com) 

 

 
1508 

 

Since Rm ,R and P are all positive, there for from above equation D<0. 

 

Let us consider  

 

                     γ1 (
1

Rm
+

1

P
) + γ1

′ (
1

Rm
+

1

R
) < 0,                                                                                   (2.33) 

 

                     γ1 (
1

R
+ 1) + γ1

′ (
1

P
+ 1) > 0.                                                                                        (2.34) 

 

In the above case, equation (2.31) follows that C>0 and equation (2.30) shows the product of the four root of 

equation (2.29)is negative In this way equation (2.29) allow to entre one root  

ℓ1
2, which is positive that ℓ1 is real. From equation (2.27), we find 𝜔1

2 > 0, here 𝜔1 is real and the values of B1 and 

B2  are positive and B3 >0 with reference to equation (2.28) and inequality (2.33). when we consider the 

inequalities (2.33) and (2.34) the undamped TCW can propagate till both ω1 and  ℓ1 are real. The following cases 

may be considered.  

 

I. If kθ > kp(or R < 𝑃). 

The undamped TCW can propagate in the hatched region A of γ1 − γ1
′  parameter plane (Fig.1) from 

above situation such a region exists when γ1 > 0 and γ1
′ < 0.  

II. If kθ < kp(or R > 𝑃). 

The undamped TCW indicate hatched area B of γ1 − γ1
′  parameter plane (Fig.2) from above situation a 

zone exits when γ1 < 0 and γ1
′ > 0. 

III. If kθ = kp(or R = P). 

The inequalities (2.33) and 2.34 indicate unsatisfactory answer, it means undamped TCW can not exist. 

This have no more physical interest. 

 
Fig.1: Zone of undamped TCW for kθ > kp. 
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Fig.2: Zone of undamped TCW for kθ < kp. 

 

 

It is very much interesting phenomenon of the propagation of MHD thermoconvective waves in presence of 

magnetic field which is parallel to the gravitational direction. The another interesting phenomenon is that the 

thermoconvective waves possibilities appear in the binary fluid layer due to heating effect from below or above in 

the presence of solute, the waves propagation will not be affected by the magnetic field. During the propagation 

of transverse waves, fluid particles shows movement to upward and downward in a vertical direction, it is also the 

property of MHD flow that there is no electromagnetic force which initiates in the fluid due to the direction of 

fluid flow parallel to the magnetic field. So we can say that the propagation of TCW has not affected by the 

magnetic field or electric current which is initiated in the flow of propagation.  

 

2. DISCUSSION- The inequalities (2.33) and (2.34) implies that the presence of undamped TCW have few physical 

valuable significance. The conditions of inequalities (2.33) and (2.34) and the conditions used in magnetic prandtl 

number Rm (=
ν

η
) do not represent the restriction of kθ and η (Takashima). Above described condition does not 

depend on the strength of the magnetic field (M), which are reverse with the result of ‘Takashima’. The presence 

of undamped waves based on the power of the magnetic field. Conditions are satisfactory in the two cases kθ >

kp and kθ < kp, where γ1 and γ1
′  so reverse sign α > 0 and α′ < 0 in equation (2.24) which shows β and β′ both 

positive or both negative. We can find very interesting result on BENARD  convection, if fluid is heated from 

below (β >0), the BENARD  convection does not appear. In this condition the solute concentration decreases 

vertically (β′ > 0), the propagation of undamped TCW show  kθ > kp, γ1 and γ1
′  behind in the region of A (Fig. 

1). The result of kθ < kp that undamped TCW can propagate if the layer is heated above β <0 which provide that 

solute concentration increases vertically upward β′ < 0 and γ1 and γ1
′  behind in the zone B (Fig.2). If we consider 

that a small drop of fluid is displaced downward in the new condition of the drop at higher temperatue with 

higher concentration of solute shows some variation in the condition of variation in k suppose kθ < kp. The 

diffusion of mass should be faster than the heat form the drop for the surrounding area, the drop become less 

dominant in solute but it is hotter the surrounding associated region, so it increase again. The downward and 

upward motion is responsible for the propagation of TCW. In both the cases of k, (i.e.) kθ > kp and kθ < kp, the 

relationship between potential energy and density appears. This indicates the propagation with viscous and ohmic 

destriction of energy.  
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At last, we can say that the inequalities (2.33) and (2.34) do not put any relationship with M, the effect is possible 

for the demonstration of TCW in laboratory is possible for outer magnetic field.  
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